Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2024.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2024.03.06.24303821

ABSTRACT

Background: The COVID-19 pandemic has disproportionately affected workers in certain industries and occupations, and the workplace can be a high risk setting for SARS-CoV-2 transmission. In this study, we measured SARS-CoV-2 antibody prevalence and identified work-related risk factors in a population primarily working at industrial livestock operations. Methods: We used a multiplex salivary SARS-CoV-2 IgG antibody assay to determine infection-induced antibody prevalence among 236 adult (>=18 years) North Carolina residents between February 2021 and August 2022. We used the National Institute for Occupational Safety and Health Industry and Occupation Computerized Coding System (NIOCCS) to classify employed participants' industry and compared infection-induced IgG prevalence by participant industry and with the North Carolina general population. We also combined antibody results with reported SARS-CoV-2 molecular test positivity and vaccination history to identify evidence of prior infection. We used logistic regression to estimate odds ratios of prior infection by potential work-related risk factors, adjusting for industry and date. Results: Most participants (55%) were infection-induced IgG positive, including 71% of animal slaughtering and processing industry workers, which is 1.5 to 4.3 times higher compared to the North Carolina general population, as well as higher than molecularly-confirmed cases and the only other serology study we identified of animal slaughtering and processing workers. Considering questionnaire results in addition to antibodies, the proportion of participants with evidence of prior infection increased slightly, to 61%, including 75% of animal slaughtering and processing workers. Participants with more than 1000 compared to 10 or fewer coworkers at their jobsite had higher odds of prior infection (adjusted odds ratio [aOR] 4.5, 95% confidence interval [CI] 1.0 to 21.0). Conclusions: This study contributes evidence of the severe and disproportionate impacts of COVID-19 on animal processing and essential workers and workers in large congregate settings. We also demonstrate the utility of combining non-invasive biomarker and questionnaire data for the study of workplace exposures.


Subject(s)
COVID-19 , Infections
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.28.21250717

ABSTRACT

ABSTRACT Oral fluid (hereafter saliva) offers a non-invasive sampling method for the detection of SARS-CoV-2 antibodies. However, data comparing performance of salivary tests against commercially-available serologic and neutralizing antibody (nAb) assays are lacking. This study compared the performance of a multiplex salivary SARS-CoV-2 IgG assay targeting antibodies to nucleocapsid (N), receptor binding domain (RBD) and spike (S) antigens to three commercially-available SARS-CoV-2 serology enzyme immunoassays (EIAs) (Ortho Vitros, Euroimmun, and BioRad) and nAb. Paired saliva and plasma samples were collected from 101 eligible COVID-19 convalescent plasma (CCP) donors >14 days since PCR+ confirmed diagnosis. Concordance was evaluated using positive (PPA) and negative (NPA) percent agreement, overall percent agreement (PA), and Cohen’s kappa coefficient. The range between salivary and plasma EIAs for SARS-CoV-2-specific N was PPA: 54.4-92.1% and NPA: 69.2-91.7%, for RBD was PPA: 89.9-100% and NPA: 50.0-84.6%, and for S was PPA: 50.6-96.6% and NPA: 50.0-100%. Compared to a plasma nAb assay, the multiplex salivary assay PPA ranged from 62.3% (N) and 98.6% (RBD) and NPA ranged from 18.8% (RBD) to 96.9% (S). Combinations of N, RBD, and S and a summary algorithmic index of all three (N/RBD/S) in saliva produced ranges of PPA: 87.6-98.9% and NPA: 50-91.7% with the three EIAs and ranges of PPA: 88.4-98.6% and NPA: 21.9-34.4% with the nAb assay. A multiplex salivary SARS-CoV-2 IgG assay demonstrated comparable performance to three commercially-available plasma EIAs and a nAb assay, and may be a viable alternative to assist in screening CCP donors and monitoring population-based seroprevalence and vaccine antibody response.


Subject(s)
COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.03.20205252

ABSTRACT

ABSTRACT Introduction As occupational activities related to acute industrial hog operation (IHO) worker lung function are not well defined, we aimed to identify IHO work activities associated with diminished respiratory function and the effectiveness, if any, of personal protective equipment (PPE) on IHOs. Methods From 2014-2015, 103 IHO workers were enrolled and followed for 16 weeks. At each bi-weekly visit, lung function measurements were collected via spirometry and work activities and PPE use were self-reported via questionnaire. Generalized linear and linear fixed-effects models were fitted to cross-sectional and longitudinal data. Results At baseline, increasing years worked on an IHO were associated with diminished lung function, but other activities were less consistent in direction and magnitude. In longitudinal models, only reports of working in feeding/finisher barns, showed a consistent association. However, a −0.3 L (95% confidence interval: −0.6, −0.04) difference in FEV 1 was estimated when workers wore PPE consistently versus those weeks they did not. In post-hoc analyses, we found that coveralls and facemasks were worn less consistently when workers experienced worse barn conditions and had more contact with pigs, but coveralls were worn more consistently as cleaning activities increased. Conclusions Similar to past studies, baseline estimates were likely obscured by healthy worker bias. Also making it challenging to disentangle the effect of work activities on lung function was the discovery that IHO workers used PPE differently according to work task. These data suggest that interventions may be targeted toward improving barn conditions so that workers can consistently utilize IHO-provided PPE. KEY MESSAGES What is already known about this subject? Working on industrial hog operations may be deleterious to long- and short-term respiratory health due to airborne bacteria, endotoxin, hazardous gases, dust, and dander in barns. In efficacy studies PPE has been shown to be protective, but studies have shown that PPE utilization among hog workers has historically been sub-optimal. What are the new findings? As barn conditions worsened and contact with pigs increased, workers in this cohort reported wearing coveralls and face masks less often; however, they reported increased PPE use as they conducted more cleaning activities at work. During weeks when workers wore PPE their lung function declined, a possible cause being the improper use of the equipment leading to a false sense of protection or re-exposure to hazardous contaminants. How might this impact on policy or clinical practice in the foreseeable future? Given COVID-19, the H1N1 “swine flu” pandemic, our knowledge of antimicrobial resistant pathogens, and increasing awareness about how food systems are linked to the spread of emerging infectious diseases, occupational health intervention research and workplace policies may focus on creating barn environments that are more conducive to PPE use which could help protect workers and consequently the community.


Subject(s)
COVID-19 , Communicable Diseases, Emerging
SELECTION OF CITATIONS
SEARCH DETAIL